Convolutional Neural Networks: Ensemble Modeling, Fine-Tuning and Unsupervised Semantic Localization

نویسندگان

  • Mohammadhassan Izadyyazdanabadi
  • Evgenii Belykh
  • Michael Mooney
  • Nikolay Martirosyan
  • Jennifer Eschbacher
  • Peter Nakaji
  • Mark C. Preul
  • Yezhou Yang
چکیده

Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence technology undergoing assessment for applications in brain tumor surgery. Despite its promising potential, interpreting the unfamiliar gray tone images of fluorescent stains can be difficult. Many of the CLE images can be distorted by motion, extremely low or high fluorescence signal, or obscured by red blood cell accumulation, and these can be interpreted as nondiagnostic. However, just one neat CLE image might suffice for intraoperative diagnosis of the tumor. While manual examination of thousands of nondiagnostic images during surgery would be impractical, this creates an opportunity for a model to select diagnostic images for the pathologists or surgeon’s review. In this study, we sought to develop a deep learning model to automatically detect the diagnostic images using a manually annotated dataset, and we employed a patient-based nested crossvalidation approach to explore generalizability of the model. We explored various training regimes: deep training, shallow finetuning, and deep fine-tuning. Further, we investigated the effect of ensemble modeling by combining the top-5 single models crafted in the development phase. We localized histological features from diagnostic CLE images by visualization of shallow and deep neural activations. Our inter-rater experiment results confirmed that our ensemble of deeply fine-tuned models achieved higher agreement with the ground truth than the other observers. With the speed and precision of the proposed method (110 images/second; 85% on the gold standard test subset), it has potential to be integrated into the operative workflow in the brain tumor surgery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples

Convolutional Neural Networks (CNNs) achieve state-of-theart performance in many computer vision tasks. However, this achievement is preceded by extreme manual annotation in order to perform either training from scratch or fine-tuning for the target task. In this work, we propose to fine-tune CNN for image retrieval from a large collection of unordered images in a fully automated manner. We emp...

متن کامل

Class-Weighted Convolutional Features for Visual Instance Search

Image retrieval in realistic scenarios targets large dynamic datasets of unlabeled images. In these cases, training or fine-tuning a model every time new images are added to the database is neither efficient nor scalable. Convolutional neural networks trained for image classification over large datasets have been proven effective feature extractors for image retrieval. The most successful appro...

متن کامل

Unsupervised Document Embedding With CNNs

We propose a new model for unsupervised document embedding. Existing approaches either require complex inference or use recurrent neural networks that are difficult to parallelize. We take a different route and use recent advances in language modeling to develop a convolutional neural network embedding model. This allows us to train deeper architectures that are fully parallelizable. Stacking l...

متن کامل

Unsupervised Semantic Deep Hashing

In recent years, deep hashing methods have been proved to be efficient since it employs convolutional neural network to learn features and hashing codes simultaneously. However, these methods are mostly supervised. In real-world application, it is a time-consuming and overloaded task for annotating a large number of images. In this paper, we propose a novel unsupervised deep hashing method for ...

متن کامل

Unsupervised Person Re-identification: Clustering and Fine-tuning

The superiority of deeply learned pedestrian representations has been reported in very recent literature of person re-identification (re-ID). In this paper, we consider the more pragmatic issue of learning a deep feature with no or only a few labels. We propose a progressive unsupervised learning (PUL) method to transfer pretrained deep representations to unseen domains. Our method is easy to i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.03028  شماره 

صفحات  -

تاریخ انتشار 2017